experimental conditions equal molar amounts of CO₂ and H₂O are initially produced [5]. However, because CO₂ is insoluble in the melt [6], while H₂O is soluble, CO₂ enters the fluid phase entirely, and H₂O is partitioned between fluid and melt. The $X_{H_2O}^{fl}$ is therefore less than 0.5, and, correspondingly, $f_{H_2O}^{fl}$ (= $f_{H_2O}^m$) decreases. By this procedure, the solubility of H₂O in the melt may be controlled, because H₂O solubility is a function of pressure, temperature, and $f_{H_2O}^m$ [7]. H₂O fugacity may be calculated from thermodynamic data [7] and the mode of a run. Experimental details will be discussed elsewhere [8]. Oxygen fugacity was controlled by fixing P_{H2} with a hydrogen membrane [9] to give a f_{O_2} , calculated from the $f_{H_2O}^m$, equal to that of the QFM buffer for the temperature and total pressure of the run.

Runs were made on andesite FP-16-52 from Paricutin Volcano, Mexico. Analyses of the andesite and of two experimentally-produced amphiboles are given in table 1. A few runs were made on a sample of 1921 Kilauea tholeiite, described in [3].

4. Results

Melting relations for the Paricutin andesite under H_2O -saturated conditions (summarized in fig. 1) have been previously described [8]. Amphibole in this rock composition is a near-liquidus phase only above 6 kb under H_2O -saturated conditions. Its stability has been

Table 1
Analyses of Paricutin andesite (FP-16-52) used in study and
of two amphiboles from experimental runs. All analyses by
electron microprobe; rock analysis on a hydrothermal run
held above liquidus, calculated H ₂ O-free.

	FP-16-52	Amph.	Amph.
Temp (°C)		930	900
Pressure (kb)		5.8	5.5
Wt % H ₂ O in melt		4.7	10.3
SiO ₂	60.5	40.7	45.0
TiO ₂	0.91	2.94	1.61
Al ₂ O ₃	17.3	12.9	9.6
FeO	4.3	13.6	10.3
MgO	3.8	13.1	16.1
CaO	6.3	10.8	11.7
Na ₂ O	4.3	2.58	2.46
K ₂ O	1.69	0.57	0.54
	99.10	97.19	97.31

Fig. 1. Melting relations in Paricutin and site FP-16-52. Curves refer to H_2O -saturated conditions, except for the dry liquidus at right.

closely examined at 5.5 kb in both H₂O-saturated and undersaturated runs (fig. 2). Although the upper stability limit of amphibole at H₂O-saturated conditions was determined precisely only at 2 kb, its amphiboleout temperature can be drawn with some confidence because at 2 kb this amphibole breaks down at 930 \pm 5°, precisely the same as in a Mt. Hood andesite, which has a well-determined H₂O-saturated amphiboleout curve [10, 11].

In fig. 2 runs to delimit amphibole stability have been labeled with that weight percent H₂O which was calculated to be present in melt of the run. At 5–6 kb runs with 10–11 percent H₂O in melt represent H₂Osaturated conditions; runs containing 4.7 percent H₂O had $X_{H_2O}^{fl} = 0.43$. The runs containing 4.7 percent H₂O indicate that lowering $X_{H_2O}^{fl}$ from 1.0 to 0.5 changed the upper stability limit of amphibole very little up to 6 kb. The amphibole-out curve for $X_{H_2O}^{fl} =$ 0.5 probably lies near or up to 15° above the H₂Osaturated amphibole-out curve at 5.5 kb. This condition agrees with results from basalt composition experiments (see below). However, when $X_{H_2O}^{fl}$ was

D.H. Eggler, Amphibole stability in calc-alkaline melts

Fig. 2. Results of runs on amphibole stability in Paricutin andesite. Solid brackets indicate amphibole present; open brackets indicate amphibole absent. Size of brackets represents estimated errors in measured pressure and temperature. Numbers are weight percent H₂O in melt.

lowered from 0.5 to 0.43 (weight percent H₂O in melt lowered from 4.7 to 4.4), the upper stability limit of amphibole was *lowered*. Two runs at 5.8 kb, 930°C clearly show this effect, because for 4.7 percent H₂O the limit must lie above, and for 4.4 percent H₂O below, 930°. These capsules were run side-byside at exactly the same experimental conditions, except for amount of oxalic acid added to the capsule. It is anticipated that further lowering of $X_{H_2O}^{fl}$ would further decrease amphibole stability. Unfortunately, experimentation in the lower temperature-lower water content range is difficult because of problems in attaining equilibrium, in determining percent glass of the run, and in having confidence in the ideal mixing assumption for H₂O-CO₂ fluids.

These results on andesite may be compared to experiments on basalt. Hill and Boettcher [12] demonstrated that above 13 kb the upper stability of amphibole in 1921 Kilauea tholeiite was raised 50–120°C when $X_{H_2O}^{fl}$ was decreased from 1.0 to 0.5. New experiments on 1921 tholeiite at 2 kb, when combined with data of Holloway and Burnham (fig. 3), indicate that at low pressure the change in stability limit is much less, $0-15^{\circ}$ C.

Basalt differs from andesite in that amphibole stability is about 60° C higher, and more modal amphibole is present in basalt runs, because of the greater normative amphibole content of basalt. However, amphibole compositions are similar in runs of both compositions.

5. Discussion

Holloway [3] suggested the instability of amphibole in 1921 tholeiite at 5 kb was a melting reaction:

100 amph = 23 cpx + 77 liquid

(1)

30